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Systems with two types of agents with a preference for heterophilous interaction produce networks that are
more or less close to bipartite. We propose two measures quantifying the notion of bipartivity. The two
measures—one well known and natural, but computationally intractable, and the other computationally less
complex, but also less intuitive—are examined on model networks that continuously interpolate between
bipartite graphs and graphs with many odd circuits. We find that the bipartivity measures increase as we tune
the control parameters of the test networks to intuitively increase the bipartivity, and thus conclude that the
measures are quite relevant. We also measure and discuss the values of our bipartivity measures for empirical
social networks~constructed from professional collaborations, Internet communities, and field surveys!. Here
we find, as expected, that networks arising from romantic online interaction have high, and professional
collaboration networks have low, bipartivity values. In some other cases, probably due to low average
degree of the network, the bipartivity measures cannot distinguish between romantic and friendship oriented
interaction.

DOI: 10.1103/PhysRevE.68.056107 PACS number~s!: 89.75.Fb, 89.75.Hc, 05.50.1q
ie
or
an
tr

uc
a
a
u
is
th
re

m
tin
nt
so
s
a
g
er

ser
ely
that
for

al
ve
ng

g
fore,

ap-
ted
for

eas
on-
less

ty.
a
tively
nd
pes

ent
I. INTRODUCTION

Any system, natural or man-made, consisting of entit
that interact pairwise can be described in terms of a netw
Networks in the real life often contain some degree of r
domness, and have also some structure arising from the s
egies or laws the entities follow to make new contacts. S
networks—that can only be described as having both r
domness and structure—are called complex networks
have lately received much attention in the physicist comm
nity @1,2#. Among the most important developments in th
recent surge of activity in network research is arguably
categorization and quantification of static network structu
such as clustering@3#, degree distribution@4#, assortative
mixing coefficient @5#, grid coefficient@6#, etc. A network
with no circuit of odd length is calledbipartite. Many sys-
tems are naturally modeled as bipartite networks: Bioche
cal networks can be described by vertices represen
chemical substances separated by vertices represe
chemical reactions@7#. As another example, we have the
called ‘‘two-mode’’ representation of affiliation network
where one kind of vertices represents, e.g., organizations
the other type represents individual actors, and the ed
indicate to which organizations an actor belongs. But th

*Electronic address: holme@tp.umu.se
1063-651X/2003/68~5!/056107~12!/$20.00 68 0561
s
k.
-
at-
h

n-
nd
-

e
s

i-
g

ing

nd
es
e

are also networks that are not necessarily bipartite, but clo
to bipartite than what can be expected from a complet
random network. Examples of such networks are those
are formed by two types of agents with a preference
heterophilous interaction~human sexual contacts@8,12# and
human romance or partnership networks@9# being two
cases!. In many cases one knows the type of the individu
vertices ~the gender of the actors in the examples abo!
@10#, but in other cases such information might be lacki
~see the data studied in Ref.@11# for a concrete example!.
Nevertheless, the ‘‘bipartivity’’—how far away from bein
bipartite a graph is—is a measurable structure, and there
we believe, deserves attention.

Bipartivity measures have some potentially interesting
plications: Network-based studies of sexually transmit
diseases@12# is one such area as the transmission rates
homosexual and heterosexual contacts differ@13#. Apart
from romantic and sexual networks, there are other ar
where a bipartivity measure may prove useful: One can c
sider a trade network where some agents are more or
pronounced sellers and others are primarily buyers~cf. Ref.
@14#!; such networks would not have a neutral bipartivi
Another application is for the ‘‘genealogical’’ network of
disease outbreak: Some contagious diseases have a rela
stable duration between when an individual is infected a
when he or she becomes infectious. Epidemics of these ty
of diseases can therefore roughly be divided into differ
generations of infected individuals@13#. A network consist-
©2003 The American Physical Society07-1
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ing of possible edges of infections, for an outbreak of t
type of disease, should therefore have very few odd-len
circuits. The reason is that the infection is only transmit
between succeeding generations, which generates only
cuits of even length~in the reflexive closure of the network!.
When reconstructing the paths this kind of disease has ta
in a population, a minimization of the bipartivity measur
can be a method for excluding redundant infectious edg
Yet an area of potential applications is the study of fo
webs @15#—these are networks representing ecosyste
where the vertices are species and edges represent pred
by one species on another. In the simplest picture a food
consists of different ‘‘trophic’’ levels where species in on
level predates upon species located in the level below.
undirected representation of such a graph would be bipar
The reality is more complex~and the graph is not necessari
bipartite!, so a bipartivity measure can be a way to estim
just how complex reality is compared to the simple pictu

How can we measure bipartivity? The idea we use in t
paper is the following: We suppose that all agents of one t
tried their best in forming a connection to an agent of
other type. Then we measure to what extent this assump
fails. We can assign a labelsvP$21,11% to each vertexv
and check for the maximal fraction of edges between vert
of different sign. This fraction will be equal to or higher tha
the actual fraction of edges between vertices of differ
type. But, at least for strong heterophilous preference in
network formation, the difference should be small. For we
heterophilous preference this approach will likely fail to pr
duce a correct classification of the individual vertices. S
the number of even circuits should be larger than in a n
work created under the same circumstances but with no
erophilous preference; and this will~as we will see! give a
lower value of such a bipartivity measure. So even if
cannot reproduce the correct fraction of vertices of differ
type, we have a measure that is a monotonous function o
strength of the heterophilous preference. It is convenient~at
least for people familiar with statistical mechanics! to phrase
a problem like this in terms of the antiferromagnetic Isi
model. Our bipartivity measure—the maximal fraction
edges between vertices of different sign—is directly rela
to the ground state energy of the antiferromagnetic Is
model ~the relation is given in Sec. II A 1!. Throughout the
paper we will often use the terminology of such spin s
tems, such as the antiferromagnetic Ising model. For
ample, we talk of an edge between two vertices of the sa
tag as a ‘‘frustrated’’ edge.

The spin system analogy to combinatorial optimizati
problems such as the one we are facing—to find minim
fraction of frustrated edges—is nothing new. With this a
proach the fraction of frustrated edges defines a cost func
corresponding to the energy of the spin system. The
most studied problems in this area are thep-coloring prob-
lem and the graph bisection problem. In thep-coloring prob-
lem the question is whether or not the vertices of a graph
be assigned one ofp colors in such a way that no edge go
between two vertices of the same color. This problem is so
05610
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able in linear time forp52, but NP complete1 ~i.e., in the
general case not calculable in polynomial time@16#! for p
.2. The graph bisection problem~also NP complete! is to
partition the vertex set into two sets of equal size such t
the number of edges between the two sets is minimized@17–
19#. Both these problems can, just as ours, be phrase
terms of spin models with antiferromagnetic interaction. O
minimization problem is a little bit different from the bisec
tion problem in that the two sections can have arbitrary siz
However, as in the bisection andp-coloring problems, we are
also faced with an NP-complete optimization problem.~Our
aim—to find the ground state energy of antiferromagne
Ising model—can be mapped to a min-flow max-cut probl
@20# which is NP hard on general networks@21#.!

As the spin models of statistical physics are familiar
statistical physicists, it is not surprising that topics like t
Ising and XY models on various model networks@22,23#
have received much attention in physicists’ network lite
ture. The motivation for such studies, as models of re
world systems, is that they can capture some features
opinion formation or similar social processes@24#. The
present work can also be described as a study of a spin m
on a complex network, but unlike the above mentioned st
ies, the spin model is used as a tool to measure a s
network structure.

II. THE MEASURES

In the following sections we will go through the two b
partivity measures. We state the definitions, dissect the a
rithms, and give analytic discussions about the limit prop
ties.

We represent an undirected network byG5(V,E) and a
directed network byGdir5(V,A), whereV is the set of ver-
tices,E is a set of edges~or undirected pairs of vertices!, and
A is a set of arcs~or ordered pairs of vertices!. A path of
length l is a sequence of verticesv1 , . . . ,v l such that
(v i ,v i 11)PE @or (v i ,v i 11)PA for directed graphs#; a cir-
cuit is a path where the first and last vertex are identical.
an elementarypath, or circuit, no vertex appears twice~ex-
cept the first and last in case of circuits!. In the present pape
we will only talk about elementary paths and circuits—s
for brevity we omit the word ‘‘elementary.’’ Throughout th
paper, when necessary, we let subscript or superscript ‘‘d
denote directed versions of quantities. In many cases
generalization from undirected to directed networks
straightforward; in these cases we will pursue the discuss
in the framework of undirected networks.

A. The measureb1

1. Definition

The first measure we consider is simply the fraction
unfrustrated edges in the ground state of the antiferrom

1NP is the class of problems that a nondeterministic Turing m
chine accepts in polynomial time. An NP-complete problem is
NP problem that does not belong to an easier class@49#.
7-2
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NETWORK BIPARTIVITY PHYSICAL REVIEW E 68, 056107 ~2003!
netic Ising model on the network. In terms of the antiferr
magnetic Ising model the quantity can be written as

b1512
M fr

M
5

1

2
2

E0

2M
, ~1!

whereM fr is the number of frustrated edges in the grou
state~the usual cost function in the two-coloring problem!.
E0 is the ground state energy

E05min
$sv%

,H, ~2!

where H is the Hamiltonian of the antiferromagnetic Isin
model:

H5 (
(v,w)PE

svsw , ~3a!

Hdir5 (
(v,w)PA

svsw . ~3b!

The directed quantity is obtained by substitutingH by Hdir in
Eqs.~1! and ~2!, and edges by arcs in the above discussi
The topology of the energy landscape is determined by
underlying network, and can in general be very comp
@25#.

2. Limit properties

The b1 measure takes values in the interval (1/2,1#. The
upper bound is attained for bipartite graphs. It is easy to
that b1 cannot be lower than 1/2: Consider a ground st
configuration for which the opposite is true. Then there m
be at least one vertex with more than half of its edges fr
trated. Flipping this spin would reduce the energy, wh
contradicts the fact that the system is in the ground s
@26#. We do not know if this bound is realized for any fini
graphs, butb151/2 is the limit value forb1 for a fully con-
nected graph asN→`: Partition the fully connected grap
KN of N vertices@andM5N(N21)/2 edges# into one set of
N8 and one set ofN2N8 vertices and assign opposite spi
to the elements of these sets. The number of frustrated e
is precisely the number of edges within each set, which

M fr~KN!5
N8~N821!

2
1

~N2N8!~N212N8!

2

5M2N8~N2N8!. ~4!

Thus the minimum number of frustrated edges is exa
N2/42N/2 for N85N/2, and the fraction of unfrustrate
edges is

b15
1

222/N
→ 1

2
as N→`. ~5!

The above arguments can be generalized to directed
works straightforwardly.
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3. Minimization by exchange Monte Carlo

The complexity of the ‘‘energy landscape’’ of the antife
romagnetic Ising model on an arbitrary network is difficult
judgea priori. There are indications that no natural netwo
would be too hard for a regular simulated annealing
proach@17,27#. To be on safer ground, we use a Monte Ca
scheme that is evidently very efficient to sweep even an
tremely ‘rugged’’ energy landscape without getting stuck
local minima—the so called exchange Monte Carlo~XMC!
@28#. The idea of exchange Monte Carlo is to run stand
Metropolis Monte Carlo forNT replicas of the system, eac
at a specific temperature. Then from time to time two rep
cas at adjacent temperatures are compared, and with a p
ability

Pexch.5H 1 if D,0

e2D otherwise,
~6!

where

D5S 1

T
2

1

T8
D ~E82E!, ~7!

and E is the energy of the configuration at temperatureT
~similarly for T8 andE8), andT,T8. The two replicas are
swapped between the temperatures. This condition is
signed so that the Monte Carlo scheme preserves the B
mann distribution. This is not decisive for us as we are loo
ing for the ground state energy, rather that performing
proper sampling of the configuration space, but anyway k
in our measurements. Besides just running the XMC sche
we also periodically quench the system, i.e., we swe
through all vertices of the network consecutively and fl
spins that lower the energy. The sweeps are continued un
sweep with no spin flips has occurred. For later refere
we introduce the notationstavg for the total number
of MC sweeps—we refer to the number of MC sweeps
‘‘time’’— tquenchfor the time between each quench,texch for
the time between exchange trials,tmeasurefor the time be-
tween measurement sweeps~where the energy is sampled!.

For the exchange Monte Carlo scheme to efficien
sample the configuration space all replicas needs to tour
whole range of temperatures in a reasonably short time
the same time one would not like the exchange trials, at
neighboring temperatures, to be constantly affirmative—th
the separation of the two temperatures would be of no u
We follow Ref. @28# and choose the temperature set

Ti5TlowS Thigh

Tlow
D ( i 21)/(NT21)

, ~8!

where 1< i<NT enumerates the replicas.Tlow is the lowest
andThigh represent the highest temperatures, respectively
find the actual parameter values~which will be stated in
Secs. IV A and IV B! one has to check that the replicas trav
throughout the temperature range with reasonable excha
ratios for all temperature gaps.
7-3
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B. The measureb2

Apart from finding an approximative value ofb1, one can
also define a quantity that is exactly solvable in polynom
time. Our intention is in the first hand not to make a heuris
algorithm for calculatingb1, but rather a quantity that cap
tures the same structure, i.e., which grows monotonou
with b1.

That a graph contains no odd circuits is the defining pr
erty of bipartiteness@29#. It is thus natural that we base
bipartivity measure on an odd-circuit count in some w
Unfortunately, defining a quantity in this way becomes
little bit more complicated than at first expected. One co
plication is that a graph can be very close to bipartite a
still contain many odd circuits@see Fig. 1~a!#. A way of
dealing with this problem is to mark as few edges as poss
such that each odd circuit contains at least one marked e
In many cases a marked edge will correspond to a frustr
edge of the ground state of the antiferromagnetic Is
model. In Fig. 1~a! only the upper, horizontal edge needs
be marked. Another problem one faces is how to deal w
odd circuits of different length—in a network with very fe
odd circuits a circuit of, say, length seven would contribu
as much to the global frustration of the network as a trian
@a subgraph of three adjacent vertices—see Fig. 1~b!#. But in
many real networks the total length of the odd circuits is v
long ~this is true for all networks we measure, see Sec. III!,
much larger thanM ~the number of edges in the graph!, in
these cases the short circuits are in general the most im
tant in determining the ground state configuration. For
ample, in Fig. 1~c! M523, and while we have 11 triangle
summing the lengths of all odd circuits gives 218~33 from
the 11 triangles, 45 from the nine circuits of length five, a
so on!. However, only the triangles contribute to the grou
state configuration in the sense that each triangle has
same configuration as the ground state of an isolated trian
while all odd circuits of length larger than four~e.g., the
periphery! do not have the best coloring for a circulant
that length. To deal with this we need to weigh short circu
higher than long ones. We will do this by assigning a cut
length and neglect all circuits exceeding this length.

1. Definition

Now, we make an algorithm of the above ideas as follo
Let Cn be the set of odd circuits of length<n. Let S(Cn) be
the accumulated length of the circuits inCn @so, for example,
S(C3)53 in Fig. 1~b!#. Now we assign the cutoff 3M to
S(Cn), and letn̂ be the smallestn such thatS(Cn)>3M .

(b) (c)(a)

FIG. 1. Some graphs in the discussion of theb2 quantity. The
coloring of the vertices minimizesM fr . Black edges indicate frus
tration. ~a! An almost bipartite graph with many triangles.~b! A
graph where all odd circuits contribute to the frustration.~c! A
graph were only the shortest circuits contribute to the frustratio
05610
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Next we turn to the marking procedure sketched above.
n(e) denote the number of circuits inCn̂ passing through the
edgee. Clearly edges of highn are likely to be frustrated in
the ground state@viz. Fig. 1~a!#. We now estimateM fr
roughly as the number of edges that have to be marked
that each odd circuit of length<n̂ is marked at least once. T
be precise we perform the following algorithm.

~1! Start withC5Cn̂ .
~2! Sort the edges in order ofn.
~3! Repeat the following whileCÞB.
~a! Mark the edgee with highestn.
~b! Remove all circuits inC containinge.
~c! Recalculaten for each edge.
Then the number of iterationsm8 is the assessment o

M fr , and we define our bipartivity measure as

b2512
m8

M
. ~9!

This algorithm is not an attempt to actually identify th
frustrated edges, rather it is supposed to give a highM fr for
a system with high~total! geometric frustration, and vice
versa. First, it does not necessarily find the minimal num
of edges needed to be marked for all odd circuits of len
less thann̂ to contain a marked edge. But we expect th
steepest descent optimization to come close in most ca
Second, an odd circuit can in reality only have an odd nu
ber of frustrated edges, but in the algorithm there is no s
restriction on the number of marked edges.

In case there is more than one edge with the highestn @in
step ~3a! of the algorithm# we choose the edge to mark
random. The variance between different random seeds t
out to be negligible in most cases. We will run the algorith
for different seeds to choose the highestb2 value, and get an
idea about the error inb2 from the selection of edge to mark
An alternative~and more ambitious! approach would be to
iterate the whole calculation until the highestb2 has reap-
peared a fixed number of times~cf. Ref. @30#!.

If we assume a sparse network~i.e., N}M ) the running
time of the algorithm above isO(M2). To see this we first
note that there can be at mostO(M ) iterations at step~3!. To
find the edge with highestn @in step~3a!# we do not need to
sort all edges more than once@as done in step~2!#. Instead
we can find this out while recalculatingn @in step ~3c!#.
Removing all circuits containinge @as in step~3b!# can be
done in time bounded by the total length of circuits conta
ing e, which cannot be larger than 3M . Step~3c! also needs
to go through all circuits passinge and thus needs the sam
running time as step~3b!. To sum this up, the running time
for this section of the algorithm is of orderN2.

2. Limit properties

In theN→` limit the b2 measure lies in almost the sam
interval asb1. The upper limitb251 is attained if and only
if the graph is bipartite.@If the graph is bipartiteCn̂ is empty
and n(a)50 for all a, so m850 andb251. If there exist
odd circuitsm8>0, sob2,1.# b2 cannot be as low as 0~if
7-4
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NETWORK BIPARTIVITY PHYSICAL REVIEW E 68, 056107 ~2003!
one marks all edges, every circuit must be marked!. Since
theb2 definition is inspired by the ground-state configurati
of the antiferromagnetic Ising model, we expect a simi
lower bound tob2 as tob1. In Appendix A we argue that the
lower bound on theb2, as for theb1 measure, is 1/2 in the
N→` limit.

3. The complete algorithm

So far we have overlooked the central part in calculat
the b2 measure—namely, to find odd circuits. To do this w
use a modified version of Johnson’s algorithm@31#. In prin-
ciple, Johnson’s algorithm is a depth first search where
avoid futile searching, some vertices are blocked while st
ping down the search tree. The running time for Johnso
algorithm isO„M (C11)… ~if M.N) whereC is the total
number of circuits. NowC can grow fast withN which
would make the finding of all odd circuits a quite intractab
computation. In many cases the cutoff of the circuit leng
which we introduced above to give less priority to long c
cuits, saves us by setting a limit on the search depth.
implement this we letn̄ be the current upper bound on circu
length ~or search depth!, and S̄ be the current sum of odd
circuits <n̄. As soon asS̄>M we iteratively decreasen̄ by
2 and recalculateS̄ until S̄,3. If S̄,M when the search is
over we rerun the procedure where we usen̄12 as our new
~fixed! n̄ @32#. When the search is over we assignn̂ the value
n̄. For dense bipartite graphs the algorithm is intractable
the worst case, the full bipartite graphKN/2,N/2 , there are

C~KN/2,N/2!5 (
k54

N
1

2k F ~N/2!!

~N/22k/2!! G
2

~10!

circuits ~where the sum is over even values ofk) @33# giving
a running time ofO„N2C(KN/2,N/2)…. One can of course de
cide whether or not a graph is bipartite in linear time, b
nonbipartite cases of similar complexity are easily co
structed~by, e.g., adding an isolated triangle!. In practice
these worst cases are, probably, very rare—a, relativ
speaking, very low density of odd circuits is needed to ge
small n̂—even in the real-world network with highest bipa
tivity we haven̂53. In this case (n̂53) all odd circuits are
found in O(M2) time.

Now we turn to a more complete description of the alg
rithm. Johnson’s algorithm takes the ‘‘least’’~smallest in
some enumeration! vertex in a strongly connected subgra
as its starting point. To find strongly connected compone
we use the algorithm in Ref.@34#. To sum up, the algorithm
reads as follows:

~1! Mark all vertices as unchecked.
~2! While there are unchecked vertices, iterate the follo

ing.
~a! Pick an unchecked vertexv.
~b! Find the largest strongly connected componentLv

containingv.
~c! SetLªLv and repeat the following steps as long

LÞB.
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~i! Pick the least vertexu of L.
~ii ! Call a subroutine implementing the modifie

Johnson’s algorithm. Recalculaten̄ and addCn̄ to a list C.
Delete circuits longer thann̄ from C.

~iii ! Deleteu from L.
~3! Set n̂ªn̄.
~4! Run the algorithm described above~in Sec. II B 1! to

mark edges and calculateb2.
In all cases, step~2! sets the limit on running time. As

mentioned, in most applications we expect the running ti
of step~2! to beO(M2) @similarly to that of step~4!#.

C. Clustering coefficients

In this section we state the definitions of clustering co
ficients @11,22# c andd that will be used for comparison.

Let j(n) denote the number of representations of circu
of length n, and letz(n) denote the number of represent
tions of paths of lengthn. ~By representations we mean di
ferent ways of listing adjacent vertices; so, for example,
undirected triangle has six representations, whereas a
rected triangle has three representations.! Then we define

c5
j~3!

z~3!
and d5

j~4!

z~4!
. ~11!

For directed graphs we consider the directed versions oc
andd and denote this by the subscript ‘‘dir.’’

Note that these definitions differ from the Watts-Stroga
clustering coefficient@35#, defined asM (Gv)/(2

kv) @M (Gv) is
the number of edges in the neighborhood of the vertexv,
and kv is v ’s degree# averaged overV. Nevertheless, the
definitions of c and d are common in physicists networ
literature~and have been used for a long time in social n
work analysis!. They are also more natural measures for
whole graph’s clustering since they can be interpreted as
number of triangles~or squares, i.e., four circuits!, normal-
ized by dividing by the maximal number of triangles~or
squares! for a graph with the given number of paths of leng
three~or four!. In this sensec andd can be thought of as the
densities of triangles and squares in the graph.

III. THE NETWORKS

A. Test networks with tunable bipartivity

To test and compare theb1 andb2 quantities we construc
three types of test networks where the bipartivity can
tuned by model parameters. The principle behind all mod
is to start from bipartite networks and add lesser or grea
number of edges within a partition to create odd circuits.

One type~model 1! is a quite straightforward generaliza
tion of the Erdo¨s-Renyi ~ER! model @36#: We partition the
vertices in two disjoint sets of sizesÑ andN2Ñ. Then we
add r 1M edges randomly between vertices of the differe
sets, and (12r 1)M edges regardless of what set the vertic
belongs to@see Fig. 2~a!#. In this way we interpretr 1 as the
strength of the heterophilous preference in a model wh
bipartivity is the only structural bias. The choice of verte
7-5
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pairs is done with randomness, the only restriction being
loops and multiple edges are not allowed. Ifr 150 the model
reduces to the ER model, while forr 151 the networks are
bipartite ~cf. Ref. @37#!. This model is probably the mos
random~i.e., having least structural biases! model with tun-
able bipartivity. The disadvantage is that the expectation
ues ofb1 andb2 are hard to calculate~even in the frustrated
limit r 150).

Model 2 interpolates between two-dimensional square
triangular lattices. We start, forr 250, with a triangular grid
with periodic boundary condition. LetL, the linear dimen-
sion of the system~i.e., N5L2), be even. For a nonzer
parameter value we~by uniform randomness! delete r 1L2

‘‘diagonal’’ edges creating frustration as illustrated in Fi
2~b!. To be more precise, if we index the vertices as (i x ,i y),
1< i x ,i y<L, then the edges are@( i x ,i y),(i x11,i y)# and
@( i x ,i y),(i x ,i y11)# ~giving the square grid! plus r 1L2 edges
of the form @( i x ,i y11),(i x11,i y)# chosen by uniform ran-
domness~addition is moduloL). This model has a high de
gree of short circuits. The extremesr 250 andr 151 repre-
sent two generic lattice types. The symmetries of the reg
networks simplify the calculations of, e.g., limit properti
for the bipartivity measures. Ifr 251 the system is bipartite
~note thatL has to be even for this to hold! sob1,251. When
r 250 we haveb15b252/3: For the lower limit of theb1
quantity, see Ref.@38#. For the lower limitb2 we note that
S(C3)56N ~since each vertex can be associated with t
triangles!. This givesn̂53 andn52 for all edges. Now it is
enough to markN edges„e.g., all@( i x ,i y),(i x11,i y)# edges….

r1 = 1r1

= 1r2

low

(b)

(a)

(c)

r3

= 0r2 rintermediate

= 1r3low

2

FIG. 2. Construction of the test networks.~a! shows the gener-
alization of the ER model~model 1!. ~b! shows interpolation be-
tween quadratic and triangular lattices~model 2!. ~c! shows the
model with predominantly longer circuits~model 3!. All models are
bipartite forr 1,2,351. Additional edges create odd circuits~frustra-
tion! for lower r 1,2,3 values. The black lines illustrate these add
tional edges. The white and nonwhite vertices symbolize a parti
giving b151 in the r 1,2,351 case~it is not meant to represent th
optimal coloring whenr 1,2,3,1).
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In this case we note that each edge will haven52 when it is
marked, which means that the marking sequence is opti
and that the number of iteration cannot be less with ano
choice of edges to mark. Sob2512N/3N52/3. The major
disadvantage with model 2 is that the average degree
function of r 2 @M5(32r 2)L2#. This change in the averag
degree can make it harder to separate effects of the shi
bipartivity from the shift in average degree.

In both model 1 and~even more! model 2 triangles will
dominate the set of odd circuits. To test networ
with predominantly longer circuits we construct a mod
3 as follows @see Fig. 2~c!#: We make two circulants of
size N/2 with the vertices $v1

i , . . . ,vN/2
i % and edges

$(v1
i ,v2

i ), . . . ,(vN/221
i ,vN/2

i ),(vN/2
i ,v1

i )%, i P$1,2%. Then we
add M trans transverse edges between the circulants.M trans/2
of these edges are placed out separated by equal dist
N/M trans separating the double circulants intoM trans/2 ‘‘sec-
tors.’’ Then we fill up each sector with another transver
edge. With probabilityr 3 we add an (v i

1 ,v i
2) edge@such that

(v i
1 ,v i

2) is none of the previously added transverse edg#,
otherwise we add a (v i

1 ,v i
211) edge~addition moduloN/2).

We note, to a first approximation, that ifr 350 marking~in
the process of calculatingb2) one edge between every tran
verse edge on one of the circulants is needed to mark
shortest odd circuits. This will makeb2PO(12M trans/N).

B. Real-world networks

Physicists’ networks studies have, in the spirit of statis
cal mechanics, emphasized the properties remaining w
the system grows beyond any limit. Bipartivity, as discuss
above, is well defined for all system sizes. Still it is a qua
tity that can potentially suffer from finite-size effects~from
the fact that not all real neighbors of all actors in an emp
cally constructed social network are a part of the graph! and
is therefore preferably measured for large networks. Now
problem is to find data for large-scale real-world networks
social interaction. In general two methods have been s
cessful for this purpose—one either uses professional
laborations of some sort or data from interaction over
Internet ~either in Internet communities@11,39# or through
email exchange@40#!.

1. Professional collaboration networks

In the professional collaboration networks we study t
vertices as professionals of some field—networks of sci
tists and company directors are considered in this papers
movie-actor network is another frequently studied examp
the edges represent that two actors have been involved in
same professional collaboration. This is sometimes refe
to as a ‘‘one-mode’’ representation of an affiliation netwo
~as opposed to the bipartite two-mode representation
cussed in Sec. I!.

Professional collaboration networks are no doubt intere
ing in their own right as accounts for the interaction dyna
ics of the respective fields. Assuming that the formation
professional ties follows similar principles as general hum
interaction, we can use professional collaboration netwo

n
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TABLE I. Sizes, clustering coefficients, and bipartivity measuresb1 andb2 for real-world social networks.

Network N Mdir M cdir c ddir d b1
dir b1 b2

dir b2

All contacts 29 341 174 662 115 684 0.012 0.0060 0.016 0.017 0.859 0.860 0.948
Messages 20 691 73 346 52 435 0.0052 0.0061 0.0081 0.0061 0.897 0.892 0.984
Guestbook 21 545 76 257 55 076 0.014 0.014 0.015 0.021 0.863 0.889 0.943
nioki.com 50 259 405 742 239 452 0.0076 0.0065 0.016 0.013 0.842 0.855 0.956
Emails 637 554 443 0.11 0.16 0.071 0.14 0.944 0.944 0.971 0.
arxiv.org 52 909 490 600 0.45 0.35 0.630 0.62
Directors 7475 48 899 0.21 0.37 0.549 0.50
Karate club 34 78 0.26 0.26 0.782 0.78
Prison 64 182 85 0.19 0.31 0.089 0.14 0.786 0.878 0.918 0.
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to draw conclusions about the structure of more general
cial networks. However, at one point~at least! professional
collaboration differs from general social interactions: A c
laboration tie does not necessarily imply a strong perso
acquaintance, but in these networks each collaboration
stitutes a fully connected cluster. This leads to higher fract
of short circuits than, say, a friendship network.

One of the professional collaboration networks we use
of scientists who have uploaded manuscripts to the prep
repository arxiv.org. Two scientists are linked if their nam
~identified by surname and initials! appear together on a
least one preprint. A detailed description of this network c
be found in Ref.@41#. In the other professional collaboratio
network the vertices represent company directors from
Fortune top 1000 list of companies in U.S.A. in the ye
2001. An edge~collaboration! in this network means that two
directors are sitting in board of the same company. A deta
description of this network can be found in Ref.@42#. Sizes
of the networks can be seen in Table I.

2. Online interaction networks

In online interaction networks, the vertices are users
Internet communities and an arc (A,B) is added ifA contacts
B, or if A addsB to his/her list of friends@11,39#. Another
kind of online interaction networks are email networks@40#,
where an arc can be assigned if an email is sent, or
person adds another to his/her address book. Just as for
fessional collaboration networks, one can argue that on
interaction networks are representative as general social
works. One can assume that new contacts are formed thro
preference-matching searches to a larger extent, and in
duction by mutual friends to a lesser extent, than in gen
friendship networks. Since the introduction of mutual frien
to each other is believed to be the major cause of high c
tering ~large density of triangles, or, large transitivity! @43#
one can expect a lower clustering in networks of online
teraction~still the clustering in these network seems to
finite in theN→` limit @11#!.

The specific online interaction networks we consider
constructed from the Internet communities nioki.com a
pussokram.com. The nioki.com data are described in R
@39#. In these data an arc (A,B) means thatB is listed as a
friend by A, which allowsA to see ifB is online and send
instant messages toB. In the pussokram.com data the ar
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correspond to communication between the users. There
four different types of communication in this specifi
network ~all described in detail in Ref.@11#!. We
use the networks obtained from two types of interact
~‘‘messages’’—like ordinary emails within the communit
and ‘‘guest book’’—where one user contacts another by w
ing in his/her guest book!, and the network of any of the fou
types. Network sizes can be found in Table I.

Another large difference between the pussokram.com
nioki.com data is that the former community has a very p
nounced romantic profile, encouraging flirts and roman
correspondence. nioki.com has also a search engine
‘‘‘trouve l’amour’’ ~find love!, but that is all.

Apart from the two Internet communities, we study a
other type of online interaction network based on the flow
email. For this network all incoming and outgoing email tra
fic to a server was logged for around three months@40#. The
server handles undergraduate students’’ email account
Kiel University, Germany. Thus there are two categories
vertices—internal vertices, whose activity is accurate
mapped; and external vertices, which only have edges le
ing to internal vertices. In this study we restrict ourselves
the network of internal-internal contacts. The reason we
not include external contacts is that we would miss
~probably many! circuits containing external-external edg
which would bias the bipartivity.

3. Network from interview and field survey

Apart from the above networks, all obtained from da
bases, we also measure the bipartivity of two networks
tained from interview and field surveys. The first datase
gathered by observations of interaction between member
a university karate club@44#. We also study the network o
acquaintance ties in a prison@45#. The outgoing arcs fromA
correspond to prisoners listed byA in response to the ques
tion: ‘‘What fellows on the tier are you closest friends with?
Due to their acquisition methods these kind of real-wo
networks have to be rather small. This can, as mention
result in finite-size effects. On the other hand they, m
likely, more truly reflect the structure of real acquaintan
networks.

IV. RESULTS

In this section we present the results of the test netwo
and the measurement for the real-world social networks.
7-7
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A. Test networks

As expected, bothb1 andb2 are monotonously increasin
as functions of ther 1 , r 2, andr 3 parameters of@almost@46#
all our test network~see Fig. 3!#. This is encouraging and
suggests that bothb1 andb2 are quite relevant measures
bipartivity.

The model 1 measurements shown in Fig. 3~a! are made
with the model parametersN52Ñ5100 andM5800. We
have checked many other sizes too, but all have the cha
teristic appearance of Fig. 3~a!—a linear increase ofb1 and
b2 for larger r 1 and a flatter slope forr 1 close to zero. This
shape is expected from the discussion in Sec. I—in netwo
where a heterophilous preference is the only structu
inducing force, only the strong preference limit gives
strong measurable effect: Close to the ER limitr 1'0, the
original two partitions will not be identified correctly, onl
when the different partitions~to a large extent! have different
signs will the bipartivity be proportional to the strength
the heterophilous preference.

As seen in Fig. 3~b!, model 2 shows an almost linea
functional form ofb1,2(r 2). In this case, triangles dominat
the odd circuits even at small values ofr 2. Tuning r 2 will
give a proportional increase of the number of triangles. T
a linearr 2 dependence ofb2 would be expected.

Also model 3 has linearb1,2 versusr 3 curves. The mode
parameters used areN5100 andM trans510. As mentioned
in Sec. III A, we expectb2'M trans/N for r 350, which is
confirmed in Fig. 3~c!.

An interesting feature is that, in Fig. 3~a!, b2 is consis-
tently higher thanb1; whereas in Figs. 3~b! and 3~c! the
situation is reversed. To explain this we note that differ
parts of theb2 algorithm overestimate or underestimateb2
with respect tob1. ~As mentioned before, this does not ma
ter much if one seesb2 as another bipartivity measure, rath
than an approximation ofb1.! To be more specific, the mark
ing procedure in theb2 algorithm neglects some constrain
of theb1 quantity, e.g., two edges can be marked in a trian
subgraph~in the b2 calculation!, but there cannot be two
frustrated edges in a triangle in the antiferromagnetic Is

1

0.9

0.8

0.7

0.6

0.5

1

0.9

0.8

0.7

0.6

0.5

1

0.98

0.96

0.94

0.92

0.9
0.20 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(c)(b)(a)

r rr1 3

b1
b2

, b
2

b
1

2

FIG. 3. The bipartivity measures vs the model parameters of
two models defined in Sec. III A.~a! shows the result for model 1
~b! shows the result for model 2, and~c! shows the result for mode
3. All error bars would be smaller than the symbol size. The m
notonous growth of the bipartivity measures shows that the m
sures behave expectedly.
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model. This lack of constraints in theb2 calculation tends to
makeb2 larger thanb1. On the other hand, the fact that w
do not minimize the marked edges—most notably, if there
more than one edge with the highestn, we choose the edge
to mark at random, see Sec. II B 1—leads tob2,b1. Situa-
tions with many edges of equal~highest! n are more frequent
in more regular networks. This explains that the more regu
models 2 and 3 haveb2,b1, whereas model 1~which lacks
an underlying regular lattice! hasb1,b2.

The measurements for bothb1 andb2 are averaged ove
100 network realizations. The XMC scheme for theb1 quan-
tity is ran at 24 temperatures in parallel, between tempe
tures 0.01 and 2. Other network parameters aretavg

543105, tmeasure54, tquench520, and texch51000. These
are more modest parameter values than we will use for
real-world networks, but the test networks are also mu
smaller, and since the distribution, ofb1 andb2 are ~likely!
symmetric, the network average helps to reduce the erro

B. Real-world social networks

Now we turn to the result for the bipartivity measures
real-world networks. The values are presented in Table I.
comparison we also give values for the clustering coeffici
c and the density of squaresd in both directed and undirecte
versions. Undirected networks are constructed by taking
reflexive closure. At first glance at the table we arrive at
pleasing conclusion that the bipartivity for the pussokra
.com networks is very high~as expected from a network o
romantic interaction of mostly heterosexuals!. But disap-
pointingly, the bipartivity measures show similarly high va
ues for the nioki.com and email networks. This can be
plained by the fact that nioki.com, just like th
pussokram.com, data have very lowc andd values, and pre-
sumably very few circuits. Now branches~subgraphs without
circuits that can be isolated by cutting one edge! not give a
positive contribution to eitherb1 or b2, no irrespective of the
gender of the agents. The email network does have a h
clustering, but still rather high bipartivity. The reason is th
the email network is rather heavily fragmented and conta
many isolated subnetworks of two vertices and one edge,
three vertices and two edges. Such subnetworks do not a
the clustering coefficient but tend to decrease the biparti
measures@47#.

The collaboration networks consist of a number of fu
connected clusters~corresponding to a specific collaboratio!
that are interconnected. It is thus natural that we see
bipartivity and a high density of short circuits. The low
bipartivity values for the company director network can
explained by smaller average size of such fully connec
clusters. The average number of vertices per collaboratio
9.5 for the corporate director network and 2.5 for the sci
tific collaboration data@41,42#.

The two small networks constructed from field surve
~the ‘‘karate club’’ and ‘‘prison’’ networks of Table I, dis-
cussed in Sec. III B 3! show midrange bipartivities and rela
tive high values ofc and d. From the above discussion w
can expect that the bipartivity of large, real, acquaintan
networks is somewhere between those of the collabora

e

-
a-
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networks and the Internet community networks~because
they probably have higher clustering than Internet comm
nity networks, and lower number of fully connected cluste
than the collaboration networks!. Encouraging enough, thi
is exactly what we see in Table I. Of course, the very sm
system sizes might affect the results, but that the biparti
measures of real-world acquaintance measures would
close to either the upper or lower limits seems hard to
lieve.

As a word of caution we note that the bipartivity ofte
correlates with other structural measures and is depende
the sizes (N and M ) of the network. The bipartivity mea
sures, as comparative tools, are most applicable to class
networks with a constant average degree. Furthermore, i
network has a low clustering and high bipartivity, one has
carefully consider the network forming dynamics to be a
to choose an appropriate picture of the situation—if the h
bipartivity causes the low clustering, if the low clusterin
causes the high bipartivity, or if the two structures are in
pendent.

We conclude this section by a note on the parameters
the XMC optimization. The measurement ofb1 for all real-
world network ~except the nioki.com data where we stu
the convergence more carefully! are done just once with th
following simulation parameters:NT524 ~with temperatures
from 0.002 to 5),tavg513107, tmeasure516, tquench540, and
texch523104.

V. SUMMARY AND DISCUSSION

This paper concerns the quantification of the netw
structure ‘‘bipartivity’’—how close to bipartite a given grap
is. Such measures are potentially interesting in the stud
sexually transmitted diseases, genealogical maps of dis
outbreaks, trade networks, and food webs. We propose
measures for this quantity. One quantityb1 based on the
optimal two coloring of the network—or, equivalently, th
ground state of the antiferromagnetic Ising model on the n
work. The exact value of this quantity~which has been use
in different roles elsewhere! is NP complete and thus in gen
eral not feasible to calculate exactly. Instead we seek an
proximate solution by a simulated annealing approach.
simulated annealing is based on the exchange Monte C
scheme. We argue that this unorthodox minimization met
helps us avoid local minima of the energy landscape of
antiferromagnetic Ising model. This method could also
useful in ground-state studies of traditional systems of sta
tical mechanics. Furthermore, we develop a measureb2
based on the count of odd circuits that, for almost all n
works, is calculable in polynomial time.

We propose three different random graph test mod
where one can interpolate between arguably nonbipartite
bipartite graphs by tuning a control parameter. Both our
partivity measures are shown to increase monotonically w
tuning the control parameters towards the bipartite extre
From this we conclude that the bipartivity measures rea
quantify the notion of bipartivity.

By considering example networks we infer that bipartiv
is a structure that cannot be measured by currently pop
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structural measures, such as the clustering coefficient. At
same time any sensible quantification of bipartivity proba
has to have a positive correlation with the clustering coe
cient for most networks@with exceptions for exotic cases lik
Fig. 1~a!#—so, in that case bipartivity and clustering are n
independent.

We measureb1 and b2 of a number of real-world net-
works, constructed from online interaction, professional c
laborations, and field surveys. As expected, we see high
partivity values for data from the Internet communi
pussokram.com, where romantic contacts are encoura
and hence a high degree of heterophilous interaction
pected. We also see the expected low bipartivity values
the professional collaboration and empirical acquainta
networks we study. Disappointingly we cannot use our bip
tivity measures to distinguish between the networks driv
by romantic or friendship~or professional! contacts. To do
this other structures and the network sizes have to be ta
into account, in a more elaborate analysis~which is out of
the scope of this study!.

We conclude with an analogy to linear algebra—we ha
identified a dimension~structure! and proposed base vecto
~measures!, which unfortunately are not orthogonal to th
other dimensions.
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APPENDIX A: THE LOWER BOUND OF THE MEASURE b2

In this appendix we argue that, in theN→` limit, the
lower bound forb2 is 1/2 ~just like b1). First we conjecture
that the minimal value forb2, just as forb1, is attained for
complete graphs.~This will be further motivated below.!

To assessb2 for complete graphs, we note that@48#

S~Cn!5 (
odd 3< i<n

N!

2~N2 i !!
, ~A1a!

which implies

S~C3!5
N~N21!~N22!

2
>

N~N21!

2
5M , ~A1b!

so n̂53 which results in thatn5N22 for each edge.
Now we apply the marking procedure of Sec. II B

Marking an edge (u,v) makesn(u,v)5n(v,u)50. Further-
7-9
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HOLME et al. PHYSICAL REVIEW E 68, 056107 ~2003!
more, every edge (u,w) and (v,w) (wÞu,v) will be de-
creased by one since the triangle$u,v,w% now contains a
marked edge. The discussion will be simplified by consid
ing a matrix representation ofn(u,v). Marking (u,v) sets
n(u,v)5n(v,u)50 and decreases theuth andvth columns,
anduth andvth rows by 1@an example is given in Fig 4~a!#.
Marking another edge (u8,v8) @u8 andv8 are different from
both u and v, otherwisen(u8,v8) would not be maximal#
will have the same effect as marking the first. For positio
like (u,v8) the originaln are decreased by 2@see Fig. 4~b!#,
since it has lost the two passing triangles$u,u8,v8%. and
$v8,u,v%. Continuing this process we see that it takesN/2
1O(1) markings forn of each edge to be decreased by tw
units, and thusm85N2/41O(N) markings to maken50 for
all edges. This givesb251/2 in theN→` limit. Since the
appropriateness ofb2 as a bipartivity measure is not real
dependent on the limit values, we will not give a rigoro
proof that the correction is of a lower order for all levels
the marking procedure@one level is theN/21O(1) edges
needed to be marked forn to be decreased by at least tw
units for each edge#.

Now we argue that theb2 takes its minimal value for
complete graphs. First we note that the number of circuits
lengthn per edge, for anyn, is largest in a complete grap
@2#. So if we setn̂ arbitrarily and discard circuits of lengt
<n in the calculation ofn(v), the fully connected graph
would give the highestm8 value and thus the lowest bipa
tivity measure. The strongest candidate for a lower bipar
ity measure than that of a fully connected graph would th
be a graph such that theS(Cn),3M andS(Cn12) is as big
as possible for somen. But the number edges needed to
removed from a fully connected graph forS(Cn),3M to
hold, which not only reduces the contribution ton from cir-
cuits of lengthn but also from circuits of lengthn12 to a
similar extent. If one performs the approximate marking p
cedure outlined above for circuits of length five, one sta
from n5(N22)(N23)(N24) and it takesN/21O(1)
markings to decrease everyn with at least 2N2. This means
that the number of edges needed to be marked to makn
50 for every edge is the same if circuits of length five a
considered. It also means that a graph as outlined ab
@with S(Cn),3M and S(Cn12) are as big as possible#
probably does not have a lowerb2 than a complete graph.

To epitomize, theb2 measure lies in the interval@1/2,1#
in the N→` limit. The finite-size corrections tob2 for fully

(b)
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1

FIG. 4. Marking of edges~in matrix representation! while cal-
culating theb2 quantity for a fully connected graph. ‘‘21’’ means
that n at that position is decreased by one unit, ‘‘50’’ means that
n50 at that position.
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connected graphs, however, turn out to makeb2 slightly less
than 1/2.

APPENDIX B: CONVERGENCE
OF THE SIMULATED ANNEALING

To analyze the convergence of the simulated annea
scheme we run ten independent calculations of theb1 quan-
tity ~with the same parameter values as in Sec. IV B!. The
individual time evolutions ofb1 ~at the lowest temperatur
T50.002) for the different runs are shown in Fig. 5. We no
that already after the first quenchb1 is only 3% away from
the value at the end of the run, and after 50 time stepsb1 is
0.5% of the value after 13107 time steps. We note that ther
is no way of constructing a statistically valid confidence
terval for the trueb1 value since an arbitrary complex energ
landscape could have a global minimum with a basin of
traction of measure zero. There are, however, indications
this is seldom a major problem, at least not for the bisect
problem@17#.

An interesting observation from Fig. 5 is the steplik
structure. This is a result of the exchange trials: Aftert
'100 the local minimum has been found, but at the tempe
ture in question the system is, in principle, stuck in a co
fined part of the configuration space, and cannot enter lo
lying energy valleys. In the time scalet5105 there is another
jump in theb1 value. This is related to that other replica
from other parts of the configuration space reache the low
level. At aroundt5106 the current highestb1 values~lowest
energy! reache another plateau. At this time, each repl
should have covered the whole temperature range sev
times. This second plateau gives two encouraging impli
tions. First, that the correct value ofb1 probably is not very
far off the measured value. Second, that the exchange s
really are helpful. If one wants to run this algorithm mo
efficiently thetexch we use is far too large~but beneficial for
separating the time scales in the discussion above!. Ideally
texch should probably be chosen to be of the same orde
the first jump~from the regular Monte Carlo steps!—in the
nioki.com network ~displayed in Fig. 5! this would be t
'100.

b 1

4 5 6 72 3

0.83

0.82

0.84

1 10 10 10 10 1010 10
t

FIG. 5. The current value ofb1 ~at the lowest-temperature leve
of the cooling! as a function of running time for ten independe
measurements of the directed version of the nioki.com data.
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Åberg, Nature~London! 411, 907 ~2001!.
@9# P.S. Bearman, J. Moody, and K. Stovel~unpublished!.

@10# When the type of every vertex is known, this structure can
measured by Freeman’s segregation indexS, which is~roughly
speaking! the fraction cross-type edges missing in a gra
compared with a completely random graph—a graph tha
close to bipartite would then haveS,0. L.C. Freeman, So-
ciolog. Methods Res.6, 411 ~1978!; See also: J.C. Mitchell,
Connections2, 9 ~1978!; L.C. Freeman,ibid. 2, 13 ~1978!.

@11# P. Holme, C.R. Edling, and F. Liljeros, e-prin
cond-mat/0210514.

@12# F. Liljeros, C.R. Edling, and L.A.N. Amaral, Microbes an
Infection 5, 189 ~2003!.

@13# R.M. Anderson and R.M. May,Infectious Diseases of Human
~Oxford University Press, Oxford, 1991!.

@14# H.C. White, AJS87, 517 ~1981!.
@15# S.L. Pimm,Food Webs, 2nd. ed.~University of Chicago Press

Chicago, 2002!.
@16# It should be noted that many NP-hard optimization proble

display phase transitions between ‘‘easy’’ and ‘‘hard’’ regime
e.g., the three-coloring problem is known to be hard in
small-world regime of the WS model@3#. T. Walsh, inPro-
ceedings of the 16th International Joint Conference on Art
cial Intelligence, edited by T. Dean~Morgan Kaufmann, San
Francisco, 1999!. For general references, see, e.g., P. Chee
man, B. Kanefsky, and W.M. Taylor, inProceedings of IJCAI-
91, edited by J. Mylopoulos and R. Reiter~Kaufmann, San
Mateo, CA, 1991!, pp. 331–337; T. Hogg, B.A. Huberman
and C.P. Williams, Artif. Intell.88, 1 ~1996!.

@17# M. Jerrum and G. Sorkin~unpublished!.
@18# G.R. Schreiber and O.C. Martin, SIAM J. Optim.10, 231

~1999!.
@19# Y. Fu and P.W. Anderson, J. Phys. A19, 1605~1986!.
@20# M.J. Alava, P.M. Duxbury, C.F. Moukarzel, and H. Rieger,

Phase Transitions and Critical Phenomena, edited by C.
Domb and J.L. Lebowitz~Academic Press, London, 2001!,
Vol. 18, pp. 143–317.

@21# R.M. Karp, in Complexity of Computer Computations, edited
by R. E. Miller and J.W. Thatcher~Plenum Press, New York
1972!, pp. 85–103.

@22# A. Barrat and M. Weigt, Eur. Phys. J. B13, 547 ~2000!.
@23# See, e.g., M. Gitterman, J. Phys. A33, 8373~2000!; P. Sven-

son, Phys. Rev. E64, 036122~2001!; B.J. Kim, H. Hong, P.
Holme, G.S. Jeon, P. Minnhagen, and M.Y. Choi,ibid. 64,
056135~2001!; C.P. Herrero,ibid. 65, 066110~2002!; A. Ale-
ksiejuk, J.A. Holyst, and D. Stauffer, Physica A310, 260
05610
t

e

,
is

s
,

-

e-

~2002!; D. Boyer and O. Miramontes, Phys. Rev. E67, 035102
~2003!; K. Medvedyeva, P. Holme, P. Minnhagen, and B
Kim, ibid. 67, 036118~2003!; G. Bianconi, Phys. Lett. A303,
166 ~2002!; A. Aleksiejuk-Fronczak, e-print
cond-mat/0206027.

@24# D.B. Bahr and E. Passerini, J. Math. Sociol.23, 1 ~1998!; D.B.
Bahr and E. Passerini,ibid. 23, 29 ~1998!; S.N. Durlauf, Proc.
Natl. Acad. Sci. U.S.A.96, 10 582~1999!; H.P. Young, inThe
Economy as an Evolving Complex System, edited by L.E.
Blume and S.N. Durlauf~Oxford University Press, Oxford
2003!.

@25# For an interesting discussion on this problem in a somew
more complex Ising spin-glass model, see F. Barahona
Phys. A15, 3241~1982!.

@26# Note that our starting point is that there are no known
tributes to the vertices. If one would know, e.g., the gender
the actors in a social network, the fraction of edges betw
actors of the same gender is in the interval@0,1#.

@27# S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Science220, 671
~1983!.

@28# K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn.65, 1604
~1996!.

@29# See any introductory text on graph theory, for example,
Tucker, Applied Combinatorics, 3rd ed. ~Wiley, New York,
1995!, p. 31.

@30# L.R. Walker and R.E. Walstedt, Phys. Rev. B22, 3816~1980!.
@31# D.B. Johnson, SIAM J. Comput.4, 77 ~1975!.
@32# The intuitive way to find a least upper bound might be

search at two levels simultaneously (n̄ andn̄22) and decrease

the boundn̄°n̄22 whenS n̄22>M (S n̄22 denotes the sum o

the length of all circuits shorter than or equal ton̄22). This
would slow down the computation considerably since o
modified Johnson’s algorithm mostly finds circuits of th

length of the search depthn̄, and thus it takes a long time to
increaseS n̄22.

@33# ConsiderKN/2,N/25(V,U,E) whereV andU are the two vertex
sets. We write a circuit as ak-tuple (v1 ,u1 , . . . ,vk/2 ,uk/2)
where vPV and uPU. Then there are (N/2)(N/2)•••@N/2
2(k/221)#@N/22(k/221)#5@(N/2)!/(N/22k/2)!#2 distinct
k-tuples; As for circuits, the choice of start vertexv1 does not
matter; neither does the direction matter. To compensate
this we divide by 1/2k to get the right number of circuits o
lengthk in KN/2,N/2 .

@34# A.V. Aho, J.E. Hopcroft, and J.D. Ullman,The Design and
Analysis of Computer Algorithms~Addison-Wesley, Reading
MA, 1974!, pp. 189–195.

@35# D.J. Watts and S.H. Strogatz, Nature~London! 393, 440
~1998!.

@36# P. Erdös and A. Re´nyi, Publ. Math. Debrecen6, 290 ~1959!.
@37# M.E.J. Newman, S.H. Strogatz, and D.J. Watts, Phys. Rev

64, 026118~2001!.
@38# G.H. Wannier, Phys. Rev.79, 357 ~1950!; R.M.F. Houtappel,

Physica~Amsterdam! 16, 425 ~1950!.
@39# R. Smith, e-print cond-mat/0206378.
@40# H. Ebel, L.I. Mielsch, and S. Bornholdt, Phys. Rev. E66,

035103~2002!.
@41# M.E.J. Newman, Phys. Rev. E64, 016131~2001!.
@42# G.F. Davis, M. Yoo, and W.E. Baker, Strategic Organization1,

301 ~2003!.
7-11



th

no
nc

er-
the

HOLME et al. PHYSICAL REVIEW E 68, 056107 ~2003!
@43# M.E.J. Newman, Phys. Rev. E64, 025102~2001!.
@44# W. Zachary, J. Anthropolog. Res.33, 452 ~1977!.
@45# J. MacRae, Sociometry23, 360 ~1960!.
@46# Actually theb1 value for model 1 is 0.2% lower~around three

standard deviations! for r 150.1 than forr 150. We will not
speculate in the reason for this since the effect is small and
overall picture is clear.

@47# A potential improvement would be to measureb1 and b2 on
the two-core~the maximal subgraph with minimal degree 2! of
G. This would eliminate circuit-free subgraphs that contain
information about the degree of heterophilous prefere
05610
e

e

among the agents forming the network.
@48# In the KN , the number of circuits of lengthi is the i permuta-

tions N!/(N2 i )! divided by 2i ~a factor i to compensate for
the overcounting since a circuit is independent of starting v
tex; a factor 2 to compensate for the double counting of
two directions!. For KN the contribution of circuits of lengthi
to the sum isi times the number of them, this gives Eq.~A1a!.

@49# J.E. Hopcroft and J.D. Ullman,Introduction to Automata
Theory, Languages and Computation~Addison-Wesley, Read-
ing, MA, 1979!.
7-12


