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Systems with two types of agents with a preference for heterophilous interaction produce networks that are
more or less close to bipartite. We propose two measures quantifying the notion of bipartivity. The two
measures—one well known and natural, but computationally intractable, and the other computationally less
complex, but also less intuitive—are examined on model networks that continuously interpolate between
bipartite graphs and graphs with many odd circuits. We find that the bipartivity measures increase as we tune
the control parameters of the test networks to intuitively increase the bipartivity, and thus conclude that the
measures are quite relevant. We also measure and discuss the values of our bipartivity measures for empirical
social networkgconstructed from professional collaborations, Internet communities, and field surkeys
we find, as expected, that networks arising from romantic online interaction have high, and professional
collaboration networks have low, bipartivity values. In some other cases, probably due to low average
degree of the network, the bipartivity measures cannot distinguish between romantic and friendship oriented

interaction.
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[. INTRODUCTION are also networks that are not necessarily bipartite, but closer

to bipartite than what can be expected from a completely
random network. Examples of such networks are those that

Any system, natural or man-made, consisting of entltlesare formed by two types of agents with a preference for

that interact pairwise can be described in terms of a network. ) : .
) . ; eterophilous interactiothuman sexual contac{8$,12] and
Networks in the real life often contain some degree of ran-

. t}uman romance or partnership networf®] being two
domness, and have also some structure arising from the strat- >
cases In many cases one knows the type of the individual

egies or laws the entities follow to make new contacts. Sucr\]/ertices (the gender of the actors in the examples above

networks—that can only be described as having both ran- . . . . .
domness and structure—are called complex networks a:EO], but in other cases such information might be lacking
P See the data studied in R¢fl1] for a concrete example

have lately received much attention in the physicist COMMUKayertheless, the “bipartivity’—how far away from being

nity [1,2]. Among the most important developments in this - ite 5 graph is—is a measurable structure, and therefore,
recent surge of activity in network research is arguably the, o believe, deserves attention.
categorization and quantification of static network structures Bipartivity measures have some potentially interesting ap-
such as clustering3], degree distributior{4], assortative pjications: Network-based studies of sexually transmitted
mixing coefficient[5], grid coefficient[6], etc. A network  gisease§12] is one such area as the transmission rates for
with no circuit of odd length is calletipartite. Many sys-  homosexual and heterosexual contacts diffe8]. Apart
tems are naturally modeled as bipartite networks: Biochemifrom romantic and sexual networks, there are other areas
cal networks can be described by vertices representinghere a bipartivity measure may prove useful: One can con-
chemical substances separated by vertices representisgler a trade network where some agents are more or less
chemical reaction§7]. As another example, we have the so pronounced sellers and others are primarily buyefsRef.
called “two-mode” representation of affiliation networks [14]); such networks would not have a neutral bipartivity.
where one kind of vertices represents, e.g., organizations anghother application is for the “genealogical” network of a
the other type represents individual actors, and the edgedisease outbreak: Some contagious diseases have a relatively
indicate to which organizations an actor belongs. But ther&table duration between when an individual is infected and
when he or she becomes infectious. Epidemics of these types
of diseases can therefore roughly be divided into different
*Electronic address: holme@tp.umu.se generations of infected individual43]. A network consist-
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ing of possible edges of infections, for an outbreak of thisable in linear time fop=2, but NP complete(i.e., in the
type of disease, should therefore have very few odd-lengtlgeneral case not calculable in polynomial tifies]) for p
circuits. The reason is that the infection is only transmitted>2. The graph bisection problefalso NP completeis to
between succeeding generations, which generates only cipartition the vertex set into two sets of equal size such that
cuits of even lengtliin the reflexive closure of the network the number of edges between the two sets is minimjiz&e-
When reconstructing the paths this kind of disease has takek?]. Both these problems can, just as ours, be phrased in
in a population, a minimization of the bipartivity measuresterms of spin models with antiferromagnetic interaction. Our
can be a method for excluding redundant infectious edge@inimization .problem is a little t_)it different from the bisep—
Yet an area of potential applications is the study of foogtion problem in that the two sections can have arbitrary sizes.
webs [15]—these are networks representing ecosystem5/OWeVer, as in the bisection apetoloring problems, we are
where the vertices are species and edges represent predatfﬂﬁo face(_JI with an NP-complete optimization _problémur .
by one species on another. In the simplest picture a food we jm—to g'nld the %round St%te energyﬂof antlferromaggleuc
consists of different “trophic” levels where species in one I[ISZI(;]]QWT]?cheis_ISl%nhai dm:r?gin(ta?a? rrgpvglo?[vél??x'wt problem
Ieve_l predates upon species located in the level bel_ow. A As the spin models of statistical physics are familiar to
undirected representation of such a graph would be blpal’tlt%t

o . . atistical physicists, it is not surprising that topics like the
The reality is more completand the graph is not necessarily Ising and XY models on various model networkg2,23

bipartite), so a bipartivity measure can be a way to estimatg,,ye received much attention in physicists’ network litera-

just how complex reality is compared to the simple picture.yyre. The motivation for such studies, as models of real-
How can we measure bipartivity? The idea we use in thisyorig systems, is that they can capture some features of

paper is the following: We suppose that all agents of one typ@pinion formation or similar social process¢24]. The

tried their best in forming a connection to an agent of thepresent work can also be described as a study of a spin model

other type. Then we measure to what extent this assumptiogn a complex network, but unlike the above mentioned stud-

fails. We can assign a label, e {—1,+1} to each vertex ies, the spin model is used as a tool to measure a static

and check for the maximal fraction of edges between verticeaetwork structure.

of different sign. This fraction will be equal to or higher than

the actual fraction of edges between vertices of different Il. THE MEASURES

type. But, at least for strong heterophilous preference in the

network formation, the difference should be small. For weak In the following sections we will go through the two bi-

heterophilous preference this approach will likely fail to pro- Partivity measures. We state the definitions, dissect the algo-

duce a correct classification of the individual vertices. Still,"ithms, and give analytic discussions about the limit proper-

the number of even circuits should be larger than in a netlles.

work created under the same circumstances but with no het. e represent an undirected network Gy-(V,E) and a
erophilous preference: and this witis we will seg give a  directed network byGq, = (V,A), whereV is the set of ver-

lower value of such a bipartivity measure. So even if Wetlces,E is a set of edgeeor undirected pairs of verticksand

cannot reproduce the correct fraction of vertices of dif“feren‘A r:S tﬁ ISE;tS o; asrgs(ﬁgr?ggegefdvzﬂsegf vertlcﬁséup():?]thﬂ?;t
type, we have a measure that is a monotonous function of th _g ) eE [or? b1.1) €A for diré,ct.e.d. ’vrla s a cir-
strength of the heterophilous preference. It is conveniant Vi Uiv1) € VinUit1) € grap

least f le famili ith statistical hanits ph cuit is a path where the first and last vertex are identical. In
cast for peopie famitiar with statistical mechanits phrase elementarypath, or circuit, no vertex appears twicex-
a problem like this in terms of the antiferromagnetic Ising

| L h imal fracti fcept the first and last in case of circuiti the present paper
model. Our bipartivity measure—the maximal fraction of o il only talk about elementary paths and circuits—so,

edges between vertices of different sign—is directly relateq, brevity we omit the word “elementary.” Throughout the
to the ground state energy of the antiferromagnetic Ising)aper, when necessary, we let subscript or superscript “dir”
model (the relation is given in Sec. Il A)1 Throughout the  genote directed versions of quantities. In many cases the
paper we will often use the terminology of such spin sys-generalization from undirected to directed networks is
tems, such as the antiferromagnetic Ising model. For exstraightforward; in these cases we will pursue the discussion
ample, we talk of an edge between two vertices of the samgg the framework of undirected networks.

tag as a “frustrated” edge.

The spin system analogy to combinatorial optimization
problems such as the one we are facing—to find minimal
fraction of frustrated edges—is nothing new. With this ap- 1. Definition
proach the fraction of frustrated edges defines a cost function The first measure we consider is simply the fraction of
corresponding to the energy of the spin system. The tw@infrustrated edges in the ground state of the antiferromag-
most studied problems in this area are fheoloring prob-
lem and the graph bisection problem. In freoloring prob-
lem the question is whether or not the vertices of a graph cannp is the class of problems that a nondeterministic Turing ma-
be assigned one @f colors in such a way that no edge goeschine accepts in polynomial time. An NP-complete problem is an
between two vertices of the same color. This problem is solvNP problem that does not belong to an easier dds

A. The measureb,
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netic Ising model on the network. In terms of the antiferro- 3. Minimization by exchange Monte Carlo
magnetic Ising model the quantity can be written as The complexity of the “energy landscape” of the antifer-
romagnetic Ising model on an arbitrary network is difficult to
My 1 Eg . - A
b,=1- M3 (1)  judgea priori. There are indications that no natural network

would be too hard for a regular simulated annealing ap-
proach[17,27]. To be on safer ground, we use a Monte Carlo
scheme that is evidently very efficient to sweep even an ex-
tremely ‘rugged” energy landscape without getting stuck in
local minima—the so called exchange Monte Cadd/IC)

Eo=min,H, (2)  [28]. The idea of exchange Monte Carlo is to run standard

{o,} Metropolis Monte Carlo folN replicas of the system, each
at a specific temperature. Then from time to time two repli-

whereH is the Hamiltonian of the antiferromagnetic |Sing cas at adjacent temperatures are Compared' and with a prob-

where My, is the number of frustrated edges in the ground
state(the usual cost function in the two-coloring problem
Ey is the ground state energy

model: ability
1 if A<O
H= > o0, (3a) _

wwee " Pexen [ e 2 otherwise, ®)

where

Ha= 2 0,00 (3b)
(v,w)eA
1 1 ,

The directed quantity is obtained by substituttdpy H g, in A=l3- T (E'-E), )

Egs.(1) and(2), and edges by arcs in the above discussion.
The topology of the energy landscape is determined by thgq £ is the energy of the configuration at temperatiire
underlying network, and can in general be very complex(sim”a”y for T' andE’), andT<T’. The two replicas are

[25]. swapped between the temperatures. This condition is de-
signed so that the Monte Carlo scheme preserves the Boltz-
mann distribution. This is not decisive for us as we are look-
The b; measure takes values in the interval (112,The ing for the ground state energy, rather that performing a
upper bound is attained for bipartite graphs. It is easy to seproper sampling of the configuration space, but anyway kept
that b, cannot be lower than 1/2: Consider a ground statén our measurements. Besides just running the XMC scheme
configuration for which the opposite is true. Then there mustve also periodically quench the system, i.e., we sweep
be at least one vertex with more than half of its edges frusthrough all vertices of the network consecutively and flip
trated. Flipping this spin would reduce the energy, whichspins that lower the energy. The sweeps are continued until a
contradicts the fact that the system is in the ground stateweep with no spin flips has occurred. For later reference
[26]. We do not know if this bound is realized for any finite we introduce the notationg,,, for the total number
graphs, bub,;=1/2 is the limit value forb, for a fully con-  of MC sweeps—we refer to the number of MC sweeps as
nected graph abl—c: Partition the fully connected graph “time”— tq encnfor the time between each quendh,, for
Ky of N verticesfandM =N(N—1)/2 edgesinto one set of the time between exchange trials,q,suefor the time be-
N’ and one set oN—N’ vertices and assign opposite spinstween measurement sweepghere the energy is sampled
to the elements of these sets. The number of frustrated edges For the exchange Monte Carlo scheme to efficiently
is precisely the number of edges within each set, which is sample the configuration space all replicas needs to tour the
whole range of temperatures in a reasonably short time. At
N'(N'—1) (N—=N")(N—1—N") the_ same time one would not like the exchange trigls, at any
neighboring temperatures, to be constantly affirmative—then

2. Limit properties

My (Ky) =

2 2 the separation of the two temperatures would be of no use.
=M—-N'(N=N’). (4)  We follow Ref.[28] and choose the temperature set
Thus the minimum number of frustrated edges is exactly T D/ (NT=1)
N2/4—N/2 for N'=N/2, and the fraction of unfrustrated Ti:Tlow<Ti) , (8)
low

edges is

where I<i=<N7 enumerates the replicas,,, is the lowest
1 1 andTygn represent the highest temperatures, respectively. To
b1:2_2/|\|_’§ as N—e. ®)  find the actual parameter valuéwhich will be stated in
Secs. IV Aand IV B one has to check that the replicas travel
The above arguments can be generalized to directed nefiroughout the temperature range with reasonable exchange
works straightforwardly. ratios for all temperature gaps.
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@) () © Next we turn to the marking procedure sketched above. Let
v(e) denote the number of circuits @y, passing through the
edgee. Clearly edges of highv are likely to be frustrated in
the ground statdviz. Fig. 1(@]. We now estimateM;,
roughly as the number of edges that have to be marked so
FIG. 1. Some graphs in the discussion of thequantity. The  thateach odd circuit of lengtsn is marked at least once. To
coloring of the vertices minimizeM, . Black edges indicate frus- b€ precise we perform the following algorithm.
tration. (a) An almost bipartite graph with many triangle) A (1) Start withC=C5.
graph where all odd circuits contribute to the frustratiéo). A (2) Sort the edges in order of.
graph were only the shortest circuits contribute to the frustration.  (3) Repeat the following whileC # .
(a) Mark the edgee with highestv.
B. The measureb, (b) Remove all circuits inC containinge.

(c) Recalculater for each edge.

Then the number of iterations’ is the assessment of
My, and we define our bipartivity measure as

Apart from finding an approximative value bf, one can
also define a quantity that is exactly solvable in polynomial
time. Our intention is in the first hand not to make a heuristic
algorithm for calculatingd,, but rather a quantity that cap-
tures the same structure, i.e., which grows monotonously m’
with b;. b,=1— —-. 9

That a graph contains no odd circuits is the defining prop-

erty of bipartitenes$29]. It is thus natural that we base a , , , ) )
bipartivity measure on an odd-circuit count in some way. 1S algorithm is not an attempt to actually identify the

Unfortunately, defining a quantity in this way becomes afrustrated edges, rather it is supposed to give a Mghfor

little bit more complicated than at first expected. One com- System with hightota) geometric frustration, and vice
plication is that a graph can be very close to bipartite and?®"S@- First, it does not necessarily find the minimal number
still contain many odd circuit§see Fig. 18)]. A way of  ©Of €dges needed to be marked for all odd circuits of length
dealing with this problem is to mark as few edges as possibléess thann to contain a marked edge. But we expect this
such that each odd circuit contains at least one marked edgéteepest descent optimization to come close in most cases.
In many cases a marked edge will correspond to a frustrateecond, an odd circuit can in reality only have an odd num-
edge of the ground state of the antiferromagnetic Isingoer of frustrated edges, but in the algorithm there is no such
model. In Fig. 1a) only the upper, horizontal edge needs to restriction on the number of marked edges.

be marked. Another problem one faces is how to deal with In case there is more than one edge with the highést

odd circuits of different length—in a network with very few step (3@ of the algorithnj we choose the edge to mark at
odd circuits a circuit of, say, length seven would contributerandom. The variance between different random seeds turns
as much to the global frustration of the network as a triangleput to be negligible in most cases. We will run the algorithm
[a subgraph of three adjacent vertices—see Rig]1But in  for different seeds to choose the highlestvalue, and get an
many real networks the total length of the odd circuits is veryidea about the error ih, from the selection of edge to mark.
long (this is true for all networks we measure, see Sec. )JJ| B An alternative(and more ambitioysapproach would be to
much larger tharM (the number of edges in the grgpin  iterate the whole calculation until the highdst has reap-
these cases the short circuits are in general the most impopeared a fixed number of timésf. Ref. [30]).

tant in determining the ground state configuration. For ex- If we assume a sparse netwdiike., No<M) the running
ample, in Fig. 1c) M =23, and while we have 11 triangles, time of the algorithm above i©®(M?). To see this we first
summing the lengths of all odd circuits gives 2@8 from  note that there can be at m@¢M) iterations at steg3). To

the 11 triangles, 45 from the nine circuits of length five, andfind the edge with highest [in step(3a)] we do not need to

so on. However, only the triangles contribute to the groundsort all edges more than on€as done in stef2)]. Instead
state configuration in the sense that each triangle has thege can find this out while recalculating [in step (3c)].
same configuration as the ground state of an isolated triangl®emoving all circuits containing [as in step(3b)] can be
while all odd circuits of length larger than fode.g., the done in time bounded by the total length of circuits contain-
periphery do not have the best coloring for a circulant of ing e, which cannot be larger than\B. Step(3c) also needs
that length. To deal with this we need to weigh short circuitsto go through all circuits passingand thus needs the same
higher than long ones. We will do this by assigning a cutoffrunning time as stef3b). To sum this up, the running time
length and neglect all circuits exceeding this length. for this section of the algorithm is of ordé¥.

1. Definition 2. Limit properties
Now, we make an algorithm of the above ideas as follows. |n the N— o limit the b, measure lies in almost the same

Let C,, be the set of odd circuits of lengtan. Let2(C,) be  interval asb,. The upper limitb,=1 is attained if and only
the accumulated length of the circuits@y [so, for example,  if the graph is bipartitefIf the graph is bipartiteC:, is empty
2(C5)=3 in Fig. 1b)]. Now we assign the cutoff @ to  and »(a)=0 for all 8, som’=0 andb,=1. If there exist
2 (C,), and letn be the smallesh such thats(C,)=3M. odd circuitsm’=0, sob,<1.] b, cannot be as low as @f
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one marks all edges, every circuit must be mayk&ince (i) Pick the least vertex of A.

the b, definition is inspired by the ground-state configuration (i) Call a subroutine implementing the modified
of the antiferromagnetic Ising model, we expect a similarjohnson’s algorithm. Recalculateand addCj, to a listC.
lower bound tdb, as tob;. In Appendix A we argue that the Delete circuits longer than from C.

lower bound on thédy,, as for theb; measure, is 1/2 in the

o iii) Deleteu from A.
N— oo |limit. (if) —

(3) Setn:=n.

(4) Run the algorithm described abotia Sec. I B ) to
) ~ mark edges and calculats.

So far we have overlooked the central part in calculating | || cases, steg2) sets the limit on running time. As
the b, measure—namely, to find odd circuits. To do this wementioned, in most applications we expect the running time

use a modified version of Johnson’s algorithgd]. In prin-  of step(2) to be O(M?) [similarly to that of stepd)].
ciple, Johnson’s algorithm is a depth first search where, to

avoid futile searching, some vertices are blocked while step-
ping down the search tree. The running time for Johnson’s
algorithm isO(M(C+1)) (if M>N) whereC is the total In this section we state the definitions of clustering coef-
number of circuits. NowC can grow fast withN which  ficients[11,22 ¢ andd that will be used for comparison.
would make the finding of all odd circuits a quite intractable  Let £(n) denote the number of representations of circuits
computation. In many cases the cutoff of the circuit length Of lengthn, and let{(n) denote the number of representa-
which we introduced above to give less priority to long cir- tions of paths of lengtim. (By representations we mean dif-
cuits, saves us by setting a limit on the search depth. Téerent ways of listing adjacent vertices; so, for example, an

implement this we len be the current upper bound on circuit undirected triangle has six representations, whereas a di-

length (or search depth andS, be the current sum of odd rected triangle has three representatipften we define
circuits <n. As soon a2, =M we iteratively decrease by £(3) £(4)
2 and recalculat® until 2 <3. If 3 <M when the search is C=—7=r =—",
b {(3) £(4)
over we rerun the procedure where we use2 as our new
(fixed) n [32]. When the search is over we ass'fgthe value For directed graphs we consider the directed versions of
n. For dense bipartite graphs the algorithm is intractable. Indd and denote this by the subscript “dir.”
the worst case, the full bipartite grapty, ;. there are Note that these definitions differ from thke Watts-Strogatz
clustering coefficient35], defined asvi(I',)/(;”) [M(T',) is
N2 12 the number of edges in the neighborhood of the verttgx
#} (10) and k, is v's degreg averaged ovel. Nevertheless, the
(N/2—k/2)! definitions ofc and d are common in physicists network
literature (and have been used for a long time in social net-
circuits (where the sum is over even valueskyf[33] giving  work analysis. They are also more natural measures for the
a running time ofO(NZC(KN,ZVN,Z)). One can of course de- whole graph’s clustering since they can be interpreted as the
cide whether or not a graph is bipartite in linear time, butnumber of trianglegor squares, i.e., four circuitsnormal-
nonbipartite cases of similar complexity are easily con-ized by dividing by the maximal number of trianglésr
structed(by, e.g., adding an isolated triangldn practice  squaregfor a graph with the given number of paths of length
these worst cases are, probably, very rare—a, relativelyhree(or four). In this sense andd can be thought of as the
speaking, very low density of odd circuits is needed to get alensities of triangles and squares in the graph.
smalln—even in the real-world network with highest bipar-

tivity we haven=23. In this casef=3) all odd circuits are Ill. THE NETWORKS
found inO(M?) time.

Now we turn to a more complete description of the algo-
rithm. Johnson’s algorithm takes the “leastémallest in To test and compare tf® andb, quantities we construct
some enumerationvertex in a strongly connected subgraph three types of test networks where the bipartivity can be
as its starting point. To find strongly connected component§uned by model parameters. The principle behind all models
we use the algorithm in Ref34]. To sum up, the algorithm is to start from bipartite networks and add lesser or greater

3. The complete algorithm

C. Clustering coefficients

and d (11

1
C(Kninp) = 24 2k

A. Test networks with tunable bipartivity

reads as follows: number of edges within a partition to create odd circuits.

(1) Mark all vertices as unchecked. One type(mpdel 1) is a quite straightforward generaliza-

(2) While there are unchecked vertices, iterate the follow-tion of the Erds-Renyi (ER) model [36]: We partition the
ing. vertices in two disjoint sets of sizé¢ andN—N. Then we

(a) Pick an unchecked vertax addr,M edges randomly between vertices of the different

(b) Find the largest strongly connected compondnt  sets, and (+r;)M edges regardless of what set the vertices
containingu. belongs tdsee Fig. 2a)]. In this way we interpret, as the

(c) SetA:=A, and repeat the following steps as long asstrength of the heterophilous preference in a model where
AN#D. bipartivity is the only structural bias. The choice of vertex
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In this case we note that each edge will hawe2 when it is
marked, which means that the marking sequence is optimal
and that the number of iteration cannot be less with another
choice of edges to mark. Sm,=1—N/3N=2/3. The major
disadvantage with model 2 is that the average degree is a
function ofr, [M=(3—r,)L?]. This change in the average

®) degree can make it harder to separate effects of the shift in
bipartivity from the shift in average degree.

In both model 1 andeven morg model 2 triangles will
dominate the set of odd circuits. To test networks
with predominantly longer circuits we construct a model

r,=0

intermediate r, r,=1 3 as follows[see Fig. £)]: We make two circulants of

size N/2 with the vertices {v}, ... v\, and edges
© {(©1,08),  Ohe-1.0) Wizo0 D}, T €412 Then we
add M ;s transverse edges between the circulahtg,,J2
of these edges are placed out separated by equal distance
N/M ans S€Parating the double circulants intb, .42 “sec-

ow 1 Po1 tors.” Then we fill up each sector with another transverse
8 3 edge. With probability ; we add an ¢ ,v2) edge[such that

FIG. 2. Construction of the test networks) shows the gener- (v ,vf) is none of the previously added transverse efiges
alization of the ER modefmodel 3. (b) shows interpolation be- Otherwise we add a ,v?+ 1) edge(addition modulaN/2).
tween quadratic and triangular latticémodel 2. (c) shows the We note, to a first approximation, thatrig=0 marking(in
model with predominantly longer circuitsnodel 3. All models are  the process of calculating,) one edge between every trans-
bipartite forr, , 5= 1. Additional edges create odd circuifsustra-  verse edge on one of the circulants is needed to mark the

tion) for lower r, ; 3 values. The black lines illustrate these addi- shortest odd circuits. This will make, e O(1— M a0/ N).
tional edges. The white and nonwhite vertices symbolize a partition

giving b;=1 in ther, , ;=1 case(it is not meant to represent the
optimal coloring wherr; , 3<1).

B. Real-world networks

Physicists’ networks studies have, in the spirit of statisti-
pairs is done with randomness, the only restriction being thagal mechanics, emphasized the properties remaining when
loops and multiple edges are not allowedr {0 the model  the system grows beyond any limit. Bipartivity, as discussed
reduces to the ER model, while fof=1 the networks are above, is well defined for all system sizes. Still it is a quan-
bipartite (cf. Ref. [37]). This model is probably the most tity that can potentially suffer from finite-size effedtisom
random(i.e., having least structural biagemodel with tun-  the fact that not all real neighbors of all actors in an empiri-
able bipartivity. The disadvantage is that the expectation valeally constructed social network are a part of the gyapid
ues ofb; andb, are hard to calculatéeven in the frustrated is therefore preferably measured for large networks. Now the
limit r;=0). problem is to find data for large-scale real-world networks of

Model 2 interpolates between two-dimensional square andocial interaction. In general two methods have been suc-
triangular lattices. We start, fo,=0, with a triangular grid  cessful for this purpose—one either uses professional col-
with periodic boundary condition. Ldt, the linear dimen- laborations of some sort or data from interaction over the
sion of the syster(i.e., N=L?), be even. For a nonzero Internet(either in Internet communitiegl1,39 or through
parameter value weby uniform randomnegsdeleter ;L2 email exchang4Q]).

“diagonal” edges creating frustration as illustrated in Fig.
2(b). To be more precise, if we index the vertices Bsi(), 1. Professional collaboration networks

1=<iy,iy<L, then the edges arE('x"y)v('erlv'yg] and In the professional collaboration networks we study the
[(ix.iy),(ix,iy+1)] (giving the square gridplusr; L~ edges  yertices as professionals of some field—networks of scien-
of the form[(i.iy+1),(ix+1i,)] chosen by uniform ran- tists and company directors are considered in this papers, the
domnesgaddition is moduld.). This model has a high de- movie-actor network is another frequently studied example;
gree of short circuits. The extremes=0 andr;=1 repre-  the edges represent that two actors have been involved in the
sent two generic lattice types. The symmetries of the regulagame professional collaboration. This is sometimes referred
networks simplify the calculations of, e.g., limit properties to a5 a “one-mode” representation of an affiliation network
for the bipartivity measures. ,=1 the system is bipartitt (a5 opposed to the bipartite two-mode representation dis-
(note that_ has to be even for this to haldob; ,=1. When  cyssed in Sec)l

r,=0 we haveb;=b,=2/3: For the lower limit of theb; Professional collaboration networks are no doubt interest-
quantity, see Ref.38]. For the lower limitb, we note that ing in their own right as accounts for the interaction dynam-
%(C3)=6N (since each vertex can be associated with twdcs of the respective fields. Assuming that the formation of
triangles. This givesn=3 andv=2 for all edges. Now it is professional ties follows similar principles as general human
enough to marlN edges(e.g., all[ (i,,i,),(ix+1i,)] edgeg.  interaction, we can use professional collaboration networks
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TABLE |. Sizes, clustering coefficients, and bipartivity measuresndb, for real-world social networks.

Network N M gir M Cair c iy d [ b, b3 b,
All contacts 29 341 174 662 115684 0.012 0.0060 0.016 0.017 0.859 0.860 0.948 0.928
Messages 20691 73 346 52435 0.0052 0.0061 0.0081 0.0061 0.897 0.892 0.984 0.964
Guestbook 21545 76 257 55076 0.014 0.014 0.015 0.021 0.863 0.889 0.943 0.965
nioki.com 50259 405742 239452 0.0076 0.0065 0.016 0.013 0.842 0.855 0.956 0.975
Emails 637 554 443 0.11 0.16 0.071 0.14 0.944 0.944 0.971 0.941
arxiv.org 52 909 490 600 0.45 0.35 0.630 0.623
Directors 7475 48 899 0.21 0.37 0.549 0.507
Karate club 34 78 0.26 0.26 0.782 0.782
Prison 64 182 85 0.19 0.31 0.089 0.14 0.786 0.878 0.918 0.847

to draw conclusions about the structure of more general sczorrespond to communication between the users. There are
cial networks. However, at one poirdat least professional four different types of communication in this specific
collaboration differs from general social interactions: A col-network (all described in detail in Ref.[11]). We
laboration tie does not necessarily imply a strong persondise the networks obtained from two types of interaction
acquaintance, but in these networks each collaboration cof-messages”—like ordinary emails within the community,
stitutes a fully connected cluster. This leads to higher fractior@nd “guest book”—where one user contacts another by writ-
of short circuits than, say, a friendship network. ing in his/her guest bogkand the netyvork of any of the four
One of the professional collaboration networks we use idyPes: Network sizes can be found in Table .
of scientists who have uploaded manuscripts to the preprint. Another large difference between the pussokram.com and
repository arxiv.org. Two scientists are linked if their names"iOKi-com data is that the former community has a very pro-

(identified by surname and initialsappear together on at nounced ré)mantic prlgfile, enhcouralging flirts anr? rom_antic
: : o ; correspondence. nioki.com has also a search engine to
least one preprint. A detailed description of this network Camy o uve 'amour” (find love), but that is all.

be found in Ref[41]. In the other professional collaboration Apart from the two Internet communities, we study an-

network the vertices represent company directqrs from theper type of online interaction network based on the flow of
Fortune top 1000 list of companies in U.S.A. in the yeargmai| For this network all incoming and outgoing email traf-
2001. An edgécollaboration in this network means that two i: to a server was logged for around three mort@. The

directors are sitting in board of the same company. A detailederyer handles undergraduate students” email accounts at
description of this network can be found in Rpf2]. Sizes  Kie| University, Germany. Thus there are two categories of

of the networks can be seen in Table I. vertices—internal vertices, whose activity is accurately
mapped; and external vertices, which only have edges lead-
2. Online interaction networks ing to internal vertices. In this study we restrict ourselves to

]the network of internal-internal contacts. The reason we do
not include external contacts is that we would miss the
(probably many circuits containing external-external edges

which would bias the bipartivity.

In online interaction networks, the vertices are users o
Internet communities and an ar&,B) is added ifA contacts
B, or if A addsB to his/her list of friend411,39. Another
kind of online interaction networks are email netwo[k§)],
where an arc can be assigned if an email is sent, or if a 3. Network from interview and field survey
person adds another to his/her address book. Just as for pro-
fessional collaboration networks, one can argue that onlin
interaction networks are representative as general social n
works. One can assume that new contacts are formed throu

Apart from the above networks, all obtained from data-
ases, we also measure the bipartivity of two networks ob-
ained from interview and field surveys. The first dataset is
preference-matching searches to a larger extent, and intr athered by observations of interaction between members of

duction by mutual friends to a lesser extent, than in generdt University karate clup44]. We also study the network of
friendship networks. Since the introduction of mutual friends@cduaintance ties in a prisgas]. The outgoing arcs from

to each other is believed to be the major cause of high clusc0Tespond to prisoners listed Byin response to the ques-
tering (large density of triangles, or, large transitivity43] tion: “What fellows on the tier are you closest friends with?
one can expect a lower clustering in networks of online in-
teraction(still the clustering in these network seems to be

Due to their acquisition methods these kind of real-world
networks have to be rather small. This can, as mentioned,
finite in the N— oo limit [11]). result in finite-size effects. On the other hand they, most

The specific online interaction networks we consider ardKely: more truly reflect the structure of real acquaintance

constructed from the Internet communities nioki.com and€fWOrks.
pussokram.com. The nioki.com data are described in Ref.

[39]. In these data an ard\(B) means thaB is listed as a

friend by A, which allowsA to see ifB is online and send In this section we present the results of the test networks
instant messages . In the pussokram.com data the arcsand the measurement for the real-world social networks.

IV. RESULTS
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1— —a 1— —A 11— —a model. This lack of constraints in th® calculation tends to
- @) & - (0) A (©) @A makeb, larger thanb;. On the other hand, the fact that we
o9 a1 0% NG 098T . do not minimize the marked edges—most notably, if there is
~ 08l Q& 1 osl ! 5 more than one edge with the highestwe choose the edge
S b & . - Aﬁo Y to mark at random, see Sec. |l B 1—leadsbte<b,. Situa-
< 0743228 0'7AA§° 1 0.94r Aﬁo tions with many edges of equdlighesj v are more frequent
osl by | o b 1 062l2 | in more regular networks. This explains that the more regular
byo | | o models 2 and 3 havie,<b,, whereas model twhich lacks
an underlying regular lattigehasb,<<b,.

09 1 1 1 1
0 02040608 1
r

05 Il Il Il Il
0 02040608 1
r

05 Il Il Il Il
0 02040608 1

r The measurements for both andb, are averaged over

100 network realizations. The XMC scheme for thequan-
FIG. 3. The bipartivity measures vs the model parameters of théity is ran at 24 temperatures in parallel, between tempera-
two models defined in Sec. Ill Aa) shows the result for model 1, tures 0.01 and 2. Other network parameters &g
(b) shows the result for model 2, aiid) shows the result for model  =4X10°, teasus 4, tquenci= 20, andteyo=1000. These
3. All error bars would be smaller than the symbol size. The mo-gre more modest parameter values than we will use for the
notonous growth of the bipartivity measures shows that the meareg|-world networks, but the test networks are also much
sures behave expectedly. smaller, and since the distribution, bf andb, are (likely)
symmetric, the network average helps to reduce the error.

1 2 3

A. Test networks B. Real-world social networks

As expected, both; andb, are monotonously increasing
as functions of the, r,, andr; parameters ofalmost[46]
all our test network(see Fig. 3]. This is encouraging and
suggests that both; andb, are quite relevant measures of
bipartivity.

Now we turn to the result for the bipartivity measures of
real-world networks. The values are presented in Table I. For
comparison we also give values for the clustering coefficient
c and the density of squaresn both directed and undirected
- versions. Undirected networks are constructed by taking the

.The model 1 measurementsNShown in Figg) are made reflexive closure. At first glance at the table we arrive at the
with the model parametedd=2N=100 andM =800. We  pleasing conclusion that the bipartivity for the pussokram-
have checked many other sizes too, but all have the charaGom networks is very higltas expected from a network of
teristic appearance of Fig(@—a linear increase db; and  romantic interaction of mostly heterosexval8ut disap-

b, for largerr; and a flatter slope for; close to zero. This pointingly, the bipartivity measures show similarly high val-
Shape is eXpeCted from the discussion in Sec. |—in netWOI’kges for the nioki'com and ema“ networks_ Thls can be ex-
where a heterophilous preference is the only structureéplained by the fact that nioki.com, just like the
inducing force, only the strong preference limit gives apyssokram.com, data have very lovandd values, and pre-
strong measurable effect: Close to the ER limit=0, the  sumably very few circuits. Now branchésubgraphs without
original two partitions will not be identified correctly, only circuits that can be isolated by cutting one edget give a
when the different partitiondo a large extenthave different  positive contribution to eithds, or b,, no irrespective of the
signs will the bipartivity be proportional to the strength of gender of the agents. The email network does have a high
the heterophilous preference. clustering, but still rather high bipartivity. The reason is that

As seen in Fig. @), model 2 shows an almost linear the email network is rather heavily fragmented and contains
functional form ofb, r,). In this case, triangles dominate many isolated subnetworks of two vertices and one edge, and
the odd circuits even at small valuesof. Tuningr, will  three vertices and two edges. Such subnetworks do not affect
give a proportional increase of the number of triangles. Thushe clustering coefficient but tend to decrease the bipartivity
a linearr, dependence db, would be expected. measure$47].

Also model 3 has lineab, , versusr; curves. The model The collaboration networks consist of a number of fully
parameters used afé=100 andM,s=10. As mentioned  connected clustergorresponding to a specific collaboration
in Sec. Il A, we expect,~M,,/N for r3=0, which is  that are interconnected. It is thus natural that we see low
confirmed in Fig. &). bipartivity and a high density of short circuits. The lower

An interesting feature is that, in Fig(&, b, is consis-  bipartivity values for the company director network can be
tently higher thanb,; whereas in Figs. ®) and 3c) the  explained by smaller average size of such fully connected
situation is reversed. To explain this we note that differentclusters. The average number of vertices per collaboration is
parts of theb, algorithm overestimate or underestimdite 9.5 for the corporate director network and 2.5 for the scien-
with respect td;. (As mentioned before, this does not mat- tific collaboration datd41,42.
ter much if one seels, as another bipartivity measure, rather ~ The two small networks constructed from field surveys
than an approximation df;.) To be more specific, the mark- (the “karate club” and “prison” networks of Table I, dis-
ing procedure in thé, algorithm neglects some constraints cussed in Sec. Il B 8show midrange bipartivities and rela-
of theb, quantity, e.g., two edges can be marked in a triangleive high values ofc andd. From the above discussion we
subgraph(in the b, calculation, but there cannot be two can expect that the bipartivity of large, real, acquaintance
frustrated edges in a triangle in the antiferromagnetic Isinghetworks is somewhere between those of the collaboration
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networks and the Internet community networisecause structural measures, such as the clustering coefficient. At the
they probably have higher clustering than Internet commusame time any sensible quantification of bipartivity probably
nity networks, and lower number of fully connected clustershas to have a positive correlation with the clustering coeffi-
than the collaboration networksEncouraging enough, this cient for most networkpwith exceptions for exotic cases like

is exactly what we see in Table I. Of course, the very smalFig. 1(@]}—so, in that case bipartivity and clustering are not
system sizes might affect the results, but that the bipartivityndependent.

measures of real-world acquaintance measures would be We measureb; and b, of a number of real-world net-

close to either the upper or lower limits seems hard to beWorks, constructed from online interaction, professional col-
lieve. laborations, and field surveys. As expected, we see high bi-

As a word of caution we note that the bipartivity often partivity values for data from the Internet community

correlates with other structural measures and is dependent (Bjrlssokram.com_, where romantic contapts are enco_uraged,
the sizes Kl and M) of the network. The bipartivity mea- and hence a high degree of heterophilous interaction ex-

sures, as comparative tools, are most applicable to classes ?cted. We also see the expected low bipartivity values for

networks with a constant average degree. Furthermore, if thtee professional Coll_aborati_on_ and empirical acquaint_ance
network has a low clustering and high bipartivity, one has togsittw Or;favsvfr:;u?g‘ d?sli}?]pz?éﬂtlgg%g:ncgwnen(r)wteltJvS\/ir(I)(Ls” (;)rllF\)/irn
carefully consider the network forming dynamics to be able Y 9

to choose an appropriate picture of the situation—if the hig brﬁsr%rtﬁzrr‘t!s(irﬁcr:tmggdas:(ljnt%repr:ce){\?vﬁl? r;?zlecgnrfzs'és'toﬂt))ed?aken
bipartivity causes the low clustering, if the low clustering . . L
into account, in a more elaborate analy&igich is out of

;zl;?jee?]tthe high bipartivity, or if the two structures are |nde-the scope of this study

We conclude this section by a note on the parameters f%e\é\ﬁ‘iggnggﬁevr\:gg gsr;rﬁgzjfgéég I'Tgag:é%eggze_yscg‘ze
the XMC optimization. The measurement tof for all real- prop

world network (except the nioki.com data where we study (measures which unfortunately are not orthogonal to the

the convergence more carefyligre done just once with the other dimensions.
following simulation parameter$i;= 24 (with temperatures
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work. The exact value of this quantitwhich has been used
in different roles elsewheyés NP complete and thus in gen- APPENDIX A: THE LOWER BOUND OF THE MEASURE ' b,
eral not feasible to calculate exactly. Instead we seek an ap-

. i . ! In this appendix we argue that, in tié—o limit, the
proximate solution by a simulated annealing approach. Th@

wer bound forb, is 1/2 (just like b;). First we conjecture
at the minimal value fob,, just as forb4, is attained for
omplete graphg.This will be further motivated below.

To asses®, for complete graphs, we note that8]

simulated annealing is based on the exchange Monte Car
scheme. We argue that this unorthodox minimization metho
helps us avoid local minima of the energy landscape of the
antiferromagnetic Ising model. This method could also be
useful in ground-state studies of traditional systems of statis-
tical mechanics. Furthermore, we develop a measuyre sy S N! (Ala)
based on the count of odd circuits that, for almost all net- " odd=i=n 2(N—i)!’
works, is calculable in polynomial time.

We propose three different random graph test modelgvhich implies
where one can interpolate between arguably nonbipartite and
bipartite graphs by tuning a control parameter. Both our bi-

partivity measures are shown to increase monotonically with 3(Cq)= N(N-1)(N-2) = N(N-1) =M, (Alb)
tuning the control parameters towards the bipartite extreme. 2 2 '

From this we conclude that the bipartivity measures really

quantify the notion of bipartivity. son=3 which results in thav=N-—2 for each edge.

By considering example networks we infer that bipartivity =~ Now we apply the marking procedure of Sec. IIB 1.
is a structure that cannot be measured by currently populaviarking an edgef,v) makesv(u,v)=v(v,u)=0. Further-
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FIG. 5. The current value df; (at the lowest-temperature level

more, every edgeu(w) and @,w) (W#u,v) will be de- of the cooling as a fun_ction of runping time fqr t_en independent
creased by one since the triandle,u,w} now contains a measurements of the directed version of the nioki.com data.
marked edge. The discussion will be simplified by consider-

ing a matrix representation of(u,v). Marking (u,v) sets connected graphs, however, turn out to mbkeslightly less
v(u,v)=v(v,u)=0 and decreases theh andvth columns, than 1/2.

anduth andvth rows by 1[an example is given in Fig(4)].

Marking another edgeu(,v") [u’ andv’ are different from

both u and v, otherwiser(u’,v") would not be maximdl APPENDIX B: CONVERGENCE

v_viII have the same effect as marking the first. For positions OE THE SIMULATED ANNEALING

like (u,v") the originalv are decreased by[8ee Fig. 4b)],

since it has lost the two passing trianglgsu’,v’}. and To analyze the convergence of the simulated annealing

{v’,u,v}. Continuing this process we see that it tal&®  scheme we run ten independent calculations ofothguan-
+0(1) markings forv of each edge to be decreased by twotity (with the same parameter values as in Sec. VBie
units, and thusn’ = N%/4+ O(N) markings to make’=0 for  individual time evolutions ob; (at the lowest temperature
all edges. This giveb,=1/2 in theN—o limit. Since the  T=0.002) for the different runs are shown in Fig. 5. We note
appropriateness df, as a bipartivity measure is not really that already after the first quendh is only 3% away from
dependent on the limit values, we will not give a rigorousthe value at the end of the run, and after 50 time stepis
proof that the correction is of a lower order for all levels of g 504 of the value after % 107 time steps. We note that there
the marking procedurgone level is theN/2+O(1) edges s no way of constructing a statistically valid confidence in-
needed to be marked for to be decreased by at least two teryq| for the trueb, value since an arbitrary complex energy
units for each edgde o landscape could have a global minimum with a basin of at-

Now we argue that thé, takes its minimal value for  traction of measure zero. There are, however, indications that
complete graphs. First we note that the number of circuits ofyjs js seldom a major problem, at least not for the bisection
lengthn per edge, for any, is largest in a complete graph proplem[17].
[2]. So if we setn arbitrarily and discard circuits of length An interesting observation from Fig. 5 is the steplike
=<n in the calculation ofy(v), the fully connected graph structure. This is a result of the exchange trials: After
would give the highesin’ value and thus the lowest bipar- ~100 the local minimum has been found, but at the tempera-
tivity measure. The strongest candidate for a lower bipartiviure in question the system is, in principle, stuck in a con-
ity measure than that of a fully connected graph would thugined part of the configuration space, and cannot enter lower
be a graph such that tt¥(C,) <3M andX(C,.,) is as big  lying energy valleys. In the time scale: 10° there is another
as possible for some. But the number edges needed to bejump in theb; value. This is related to that other replicas
removed from a fully connected graph fa{C,)<3M to  from other parts of the configuration space reache the lowest
hold, which not only reduces the contributionitdrom cir-  level. At aroundt=10° the current highedt, values(lowest
cuits of lengthn but also from circuits of lengtin+2 to a  energy reache another plateau. At this time, each replica
similar extent. If one performs the approximate marking pro-should have covered the whole temperature range several
cedure outlined above for circuits of length five, one startsimes. This second plateau gives two encouraging implica-
from v=(N—2)(N—-3)(N—4) and it takesN/2+0O(1) tions. First, that the correct value bf probably is not very
markings to decrease everywith at least N2. This means far off the measured value. Second, that the exchange steps
that the number of edges needed to be marked to nrake really are helpful. If one wants to run this algorithm more
=0 for every edge is the same if circuits of length five areefficiently thet.,., We use is far too largéout beneficial for
considered. It also means that a graph as outlined abowseparating the time scales in the discussion abddeally
[with (C,)<3M and %(C,,,) are as big as possile t.,, should probably be chosen to be of the same order as
probably does not have a lowbg than a complete graph. the first jump(from the regular Monte Carlo stepsin the

To epitomize, theb, measure lies in the intervall/2,1] nioki.com network (displayed in Fig. b this would bet
in the N— <o limit. The finite-size corrections tb, for fully ~100.
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